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First of all

* This presentation is largely based on:

— M.D. RECKASE (2009) Multidimensional Item
Response Theory: Statistics for Social and
Behavioral Sciences. New York, NY: Springer.
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ltem Response Theory

e Various advantages:
— Sample independent parameters and estimates
— Increased precision in estimates

— Standard metric of estimates

* Between subjects
* Between tests

— Simpler composition of tests for specific audiences
* Iltem banks

— Computerised Adaptive Testing



ltem Response Theory

e Advancements from IRT models

— More information on item level

* Proportion correct (p — value): a single value that
describes the item.

 |Item difficulty: summarized as b at 50% probability of
scoring correctly, but provides information throughout

the ability spectrum.



ltem Response Theory

e Advancements from IRT models

— More information on item level

* Discrimination in CTT : biserial (or point-biserial)
correlation between item score and total score.

* |tem discrimination: slope of the tangent line to ICC
summarized as ag at its maximum point.
— Obtainable at any 6 value.



ltem Response Theory

Item Characteristic Curves

Probability




ltem Response Theory

e Advancements from IRT models

— More information on item level

* Standard Error of Measurement (CTT): a single
measure for the whole test.

* |tem and Test Information Function: inversely related
to error, again a function of 6.



ltem Response Theory
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ltem Response Theory

e Advancements from IRT models

— More information on item level
e Estimates for a range of ability traits (theta)
e Difficulty (p-value vs b)
e Discrimination (bisserial correlation vs a)
* Information (SEM vs IIF)

— Consequence: sample independence



ltem Response Theory

* Unidimensionality assumption

— Sample independence is only true (and relevant) if
the assessed trait explains enough response
variance.

— What to do with inherently multidimensional
constructs?
* Personality
* Executive Functions
* Intelligence



ltem Response Theory

 What to do with inherently multidimensional
constructs?

* Separate the test into unidimensional subtests?

— |ssues:

e Each subtest has to be considered valid on its own,
which results in very long and tiresome instruments.

 What to do with items that load in more than one
dimension?

— Thats when MIRT comes in!



Multidimensional ltem Response
Theory

Historical background

— Earliest MIRT models date from 1970s

* Reckase (1972), Mulaik (1972), Sympson (1978) and
Whitely (1980).

Factor

: * Construct dimensionality
Analysis .
* |tem loadings
MIRT



Multidimensional ltem Response
Theory

* Example (Reckase, 2009, p.80)

— Math items with two factors:
* Arithmetic problem solving (64)
* Algebraic symbol manipulation (6,)

1. A survey asked a sample of people which of two products they preferred. 50% of
the people said they preferred Product A best, 30% said they preferred Product B,
and 20% were undecided. If 1,000 people preferred Product A, how many people
were undecided?

200

400
800
1,200
2,000




Multidimensional ltem Response
Theory

* Observed data:

Table 1. Proportions of correct responses to Item 1 for 4,114 participants (Reckase, 2009, p.81)

Midpoints in 0,

Midpointsin @; .1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75




Multidimensional ltem Response
Theory

* Observed data:

Table 1. Proportions of correct responses to Item 1 for 4,114 participants (Reckase, 2009, p.81)

Midpoints in 0,

Midpointsin @; .1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75

Proportionsin 6




Multidimensional ltem Response
Theory

* Observed data:

Table 1. Proportions of correct responses to Item 1 for 4,114 participants (Reckase, 2009, p.81)

Midpoints in 0,

Midpointsin 4 -1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75 Proportionsin 0,
-1.25 0.20 0.09 0.15
-0.75 0.06 0.39 0.33
-0.25 0.18 0.30 0.46
0.25 0.19 0.39 0.47
0.75 0.24 0.49 0.53
1.25 0.30 0.54 0.52
1.75 0.51 0.57 0.62

Proportionsin 8, 0.24 0.40




Unidimensional [tem Response Theory

e |f we assumed the data to be Unidimensional

— We could only model 84 or 6,

Arithmetic Problem Solving Algebraic symbol manipulation
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Multidimensional ltem Response
Theory

* Displays of MIRT models
— Surfaces

— Examples in two dimensions only
* Two coordinate axes are necessary to describe the
ability level.
— 6;and 0,
* A third axis to represent the proportion of correct
responses or the probability P(1]6;4, 6;7).



Multidimensional ltem Response
Theory

e Observed data and Modelled surface
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Multidimensional ltem Response
Theory

* Assumptions
— Monotonicity assumption

— Local Independence assumption

* The term “local” understood as: in that position of the
8,,, space

* Major groups of models
— Compensatory
— Non-compensatory (partially compensatory)



Multidimensional ltem Response
Theory

e Models

— Compensatory

 Dimensions combine linearly to produce probability of
scoring (endorsing) the item

* High scores in a dimension can compensate lower
scores in other dimensions.

* By the time of Reckase’s book, only compensatory
models were defined for polytomous items.

e Simpler and most common on literature (Reckase,
2009).



Multidimensional ltem Response
Theory

e Models

— Non-compensatory
* Also called partially compensatory models
e Each dimension is treated separately and the final
estimated probability is the product of the individual
probabilities
* Hence, results are a nonlinear combination of the

thetas.
— A very low probability will never be compensated by a higher
ability level on another factor.



Multidimensional ltem Response
Theory

 MIRT Models (dichotomous data):
— Compensatory models

 Multidimensional extension of the 2PLM

e ] ' Unidimensional
+ i =b)  2pLm

P(UU = 1|9], ai,bi) — )

Where, i = 1,2, ..., #items
Jj = 1,2, ..., # participants
Uij = score of person j on item i
a; = discrimination for item i
b; = difficulty for item i
0; = location of subject j on 6



Multidimensional ltem Response
Theory

 MIRT Models (dichotomous data):
— Compensatory models

 Multidimensional extension of the 2PLM

a;(0;:—-b;)
e ] ' Unidimensional
+ i =b)  2pLm

P(UU = 1|9], Cli,bl') — )

Where, i = 1,2, ..., #items
Jj = 1,2, ..., # participants
Uij = score of person j on item i
a; = discrimination for item i
b; = difficulty for item i
0; = location of subject j on 6

/
a;0; +d;
| l Multidimensional

P(UU — 1‘0], ai,di) — 16

.a' _ 2PLM
+ ealel + dl



Multidimensional ltem Response
Theory

e Multidimensional extension of the 2PL

aiﬂj’- + di

aiﬂ;- + di

P(UU = 1‘91, ai,di ) = 18
+e



Multidimensional ltem Response
Theory

e Multidimensional extension of the 2PL

aiel'- + di

al-O]’- + di

P(UU = 1‘91, ai,di ) = 18
+e



Multidimensional ltem Response
Theory

e Multidimensional extension of the 2PL

al-B]'- + di

ai9],- + di

P(UU — 1|9], ai,di ) — le
+e

Both @ and a are now
1 x m vectors.

‘ ‘ a; = ay a;p .. ajm |
m = # dimensions 0,

[9]'1 9]’2 ej'm]

A discrimination statistic (MDISC or 4;)
that summarizes the a; vectoris
available:




Multidimensional ltem Response
Theory

e Multidimensional extension of the 2PL

Derivation of d:

This parameter is defined as an intercept, or a ACEEN)
location parameter.
P ab —ab
Let,
Note that in this first generalisation, even though d = —ab
originates from the product of a and b, it is not a ab + d

vector but a scalar.



Multidimensional ltem Response
Theory

e Multidimensional extension of the 2PL

eait?]’- t+d; Derivation of d:
P(Uy =1|6j, a(di)) = — a8 —b)
1+ et J "t
af — ab

If —d is divided by an element of a;, we obtaina

measure of difficulty associated with that dimension. L;t, ;
= —a
ad + d

A summary “difficulty” (MDIFF or b) for the whole
item is obtained by:




Multidimensional ltem Response
Theory

e Multidimensional extension of the 2PL

al-B]'- + di

ai9],- + di

P(UU = 1‘91, ai,di ) = 18
+e

The exponent is a linear combination of discrimination (a;) and 6 values.

m

aiﬁ.f ‘+_(_!l: szlejl -+ 513‘2.9‘;‘2 “+ e 4 Aim 9-’;',.” _+_i: Z sz.{:fejf;f' — df

15t Dimension 2" Dimension mth Dimension =1

The higher the result of the sum, the higher the probability of correct response. Each a;
works as a weight for the total sum. Hence, the more discriminative the itemis on a
particular dimension, the more influence it should have on the outcome.



Multidimensional ltem Response
Theory

 Compensatory feature

m

aidy +d; = a0 +anbjn+--+aimbim +di = Zaf-!ffejﬁ + d;.

15t Dimension 2" Dimension mth Dimension =1

— Let the exponent be equal to a given value k

* Then, all @ vectors that satisfy k = a;0; + d; fall in a
straight line.



Multidimensional ltem Response
Theory

 Compensatory feature
= k= aiBJ'- + d
" For example, letk = 0

* Let item j be defined in two dimensions and have
parameters a; = [.75 1.5] and d; = —.7

* The exponent then becomes:



Multidimensional ltem Response
Theory

 Compensatory feature

* Solving for 6,
u 02 — _581 +1_75

— Plot of theta vectors that yield
exponents of k = 0 for a test
item with parameters a; = .75,
a, =15andd = —-.7




Multidimensional ltem Response
Theory

 Compensatory feature
0)

e 1
. P(l) _1+eo_§_0'5
=0 =10.5]
=0 =[—425]
=0 =[4 —15]

= Differentcombinationsof 8; and 6,
yield the same probability of correct
response




Multidimensional ltem Response
Theory

* Compensatory Feature

— The same can be
repeated for several
different probability
lines

* Probability contours

— This item has parameters
a, = .5, a, = 1.5andd = —-.7




Multidimensional ltem Response
Theory

* |tem Response Surface
— IRS

* And now for all
possible probability
values.

— Item parameters: a; = .5,
a, =15andd =-.7




Multidimensional ltem Response
Theory

Both plots:

Fig. 4.2 Surface plot and contour plot for probability of correct response for an item witha; = .5,

ar»=15,d =—-.7




Multidimensional ltem Response
Theory

e Adifferent example. What has changed?
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Fig. 4.3 Surface plot and contour plot for the probability of correct response for an item with

ap=12,a,= .3,d =1



Multidimensional ltem Response
Theory

* A quick glance at the M3PLM
— The lower asymptote

aiG;- + di

— P(Uy = 116y afed) < e+ (1— ) s

1+e “J

Fig. 4.5 Surface plot and contour plot for probability of correct response for an item witha; = 1.3,

a=14d=—lc=2



Multidimensional ltem Response
Theory

* Non-compensatory models

— The rationale behind:

* Suppose the introductory item measured, instead:
— Arithmetic problem solving (6,)
— Reading skill (8,)

* A person with very low reading skills attempts the
example item. Even with extremely high mathematic
skills, an individual would not obtain success on the
item.



Multidimensional ltem Response
Theory

* Non-compensatory models
— Mathematical model:

1 4 el-7ai(Ge—hie)
L=1

_ o = [.7a;e( H; ¢—bir) |
Py =119 abi.c)) =ci + (1 —c) [ [ ——

— Sympson (1978).



Multidimensional ltem Response
Theory
* Non-compensatory models
— Mathematical model:

e L.7a@0@)—bQ)

PU; = 116, a-iC:' ) =¢ +(1—c) 1 el 7aQ0-bQ

* The b; also becomes a 1 x m vector

* Each unidimensional probability is calculated and their
overall product is the estimated probability of scoring

the item.
* Model was originally devised with a lower asymptote



Multidimensional ltem Response
Theory

* Non-compensatory models

— Probability contours
* For the case where ¢ = 0 Consider this simpler model:

k = l_[ D

(=
* p, is the probability of scoring correctly in each
dimension (¥).
* For the simpler two dimensional case: k = p1p,
— This yields the following plot:



Multidimensional ltem Response
Theory

* Non-compensatory models
— Probability contours (for k = .25,.50 and .75)

Mathematicaly, these are
hyperbolas

Not yet a function of 6;

02 03 04 05 06 07 08 09 I

P




Multidimensional ltem Response
Theory

* Non-compensatory models
— Probability contours (for k = .25,.50 and .75)

Now as a function of 9]-

Interesting feature: the .5 probability
curve asymptotesto the values of b;

If, say, 81 = b;1 then the unidimensional
P(1|64,b;) = .5.

Since you are multiplying probabilities
[0,1], this becomes the highest possible
probability value, for a subject with this
specific 61,

Ci = 0, a1 —=. 7, Aijr = 11,
bil =—.5 and biZ =.5




Multidimensional ltem Response
Theory

* Non-compensatory models
— Probability contours (for k = .25,.50 and .75)

Now as a function of 9]-

Interesting feature: the .5 probability
curve asymptotesto the values of b;

If, say, 81 = b;1 then the unidimensional
P(1|64,b;) = .5.

Since you are multiplying probabilities
[0,1], this becomes the highest possible
probability value, for a subject with this
specific 61,




Multidimensional ltem Response
Theory

* Non-compensatory models
— Probability contours (for k = .25,.50 and .75)

Now as a function of 9]-

Interesting feature: the .5 probability
curve asymptotesto the values of b;

Ci = 0, a1 =. 7, Ay = 1.1,
bil =—.5 and biZ =.5




Multidimensional ltem Response
Theory

Non-compensatory models
— [tem Response Surface (IRS):
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Multidimensional ltem Response
Theory

* Non-compensatory models

— ltem parameters as number of dimensions
Increase.
* InUIRT: if 6; = b;, then P(1) = .5
* In Compensatory MIRT: if 8; is the 0-vectorand d = 0,
then P(1) = .5

* For Partially Compensatory models this is not true
— Form = 2,if ; = b;, then P(1) = .25
— Form = 3,if 8; = b;, then P(1) =.125
— Forany m, if 8; = b;, then P(1) =.5™



Multidimensional ltem Response
Theory

* Non-compensatory models
— Item parameters as number of dimensions
Increase.

* P(1) = .5 for the case where 8; = 0, all @; = .588
(because of D constant) and all b;s are equal.

Number of dimensions b-parameter

0
—.88
—1.35
—1.66
—1.91
—2.10




Multidimensional ltem Response
Theory

 When to use each type of models?
— Ultimately, the fit to the data will define

— For positively correlated dimensions expect little
difference.

— According to Reckase (2009) there are few studies
that compare fit from both models.



Multidimensional ltem Response
Theory

e Multidimensional Item Information Function:

— From UIRT: item information relates to the slope
parameter.

* The bigger the slope the higher the information
function.

— The same happens in MIRT

* Issue: at each point of the IRS a different slope exists
depending on the chosen direction.



Multidimensional ltem Response
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Multidimensional ltem Response
Theory

e Multidimensional Item Information Function:

— A grid of points in the 6 space, where the
information is depicted in different angles by small
intervals.

Fig. 5.7 Information for a M2PL test item with ¢; = .5, a; = 1.2, and d = —.6 at equally

spaced points in the 8-space for angles from 07 to 90 at 10” intervals



Multidimensional ltem Response
Theory

* Applications:

— Test length reduction with MCAT

* By allowing a single item to provide information for more than one
dimension, test length can be reduced significantly. Specially using
MCAT.

— Differential Iltem Functioning

* Identifying the extent to which the underlying element is causing
unexpected invariance.

— Progressess on fields such as abnormal response patterns.
* An underlying trait could be modelled



Thank You!

* For further questions please e-mail me at:


mailto:victorduran89@gmail.com
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