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(b) IRT models

(c) Model calibration

(d) Proficiency estimation

(e) Item and test information

3. Back to CAT
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1. CAT principles

Like most psychometric methods, CAT aims at estimating some
person latent trait (proficiency, ability...) by means of the re-
sponses provided to a set of items

Two main administration schemes:

• linear testing: all test takers receive the same set of items
(possibly with different item ordering)

• adaptive testing: items are selected iteratively and adminis-
tered in order to optimally estimate each test taker’s profi-
ciency

Computerized adaptive testing (CAT): adaptive administration
with computer-based routines and item banks
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1. CAT principles

Item bank: collection of items from which one can sample and
administer items in a CAT framework

An item bank must be calibrated before a CAT is performed

Item calibration: estimation of item parameters arising from some
pre-selected item response model (see later)

In linear testing, items may not be calibrated in advance (calibra-
tion after response patterns are sampled)
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1. CAT principles

Any CAT process can be skematically split in four steps:

1. starting step: first item(s) is (are) selected and administered,
and item responses are collected (no proficiency estimation)

2. test step: iterative process of proficiency estimation, next
item selection and administration

3. stopping step: end of adaptive process once some stopping
rule is satisfied

4. final step: final proficiency estimation and output return
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1. CAT principles
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1. CAT principles

All aspects of a CAT will be further described...

... but first we need more insight on IRT!



8

2. Basic notions of item response theory (IRT)

IRT aims at providing models that describe the probability of each
possible item response, given test taker’s proficiency level and
item characteristics (i.e. item parameters)

Number and type of item parameters vary from one model to
another (see later)

In this session one restricts to dichotomous item responses: only
correct or incorrect responses!
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2. (a) Assumptions of IRT

Classical IRT models require three assumptions (assumed to hold
in this workshop):

1. Unidimensionality: each test taker’s proficiency level is cha-
racterized by a single latent trait (i.e. only one latent dimen-
sion is targeted by the test)

2. Local independence: at given proficiency level, item responses
are independent (i.e. all responses of one test taker are as-
sumed to be independent from each other)

3. Monotonicity: the probability of answering an item correctly
is a monotone (i.e. non-decreasing) function of the profi-
ciency level
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2. (a) Assumptions of IRT

Unidimensionality assumption can be relaxed by introducing mul-
tidimensional IRT models (see e.g., Reckase, 2009)

Local independence may not hold when e.g. items are nested in a
common stimulus such as in testlets, for which specific models
exist (Wainer, Bradlow, & Wang, 2007)

Monotonicity assumption can also be relaxed with very specific
IRT models (see e.g., van der Linden & Hambleton, 1997)
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2. (b) IRT models

With dichotomous item responses and the three previous assump-
tions, most common IRT models are:

• Rasch or one-parameter logistic (1PL) model

• two-parameter logistic (2PL) model

• three-parameter logistic (3PL) model

• (four-parameter logistic (4PL) model)

θ: proficiency level

j: item of interest

Xj: item response with

Xj =

{
1 for a correct response
0 for an incorrect response
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2. (b) IRT models

Rasch (1PL) model (Rasch, 1960):

Pr(Xj = 1|θ, bj) =
exp [D (θ − bj)]

1 + exp [D (θ − bj)]

bj: item difficulty level

D: scaling constant (set to 1 for logistic metric and 1.7 for normal
metric; see Haley, 1952)

Pr(Xj = 1|θ, bj) has a logistic shape and bj controls the location
of the response probability curve (item response function)



13

2. (b) IRT models
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2. (b) IRT models
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2. (b) IRT models
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2. (b) IRT models
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2. (b) IRT models
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2. (b) IRT models

2PL model (Birnbaum, 1968):

Pr(Xj = 1|θ, aj, bj) =
exp [Daj (θ − bj)]

1 + exp [Daj (θ − bj)]

aj: item discrimination level

aj controls for the slope of the logistic curve

All aj values equal across items ⇒ back to Rasch model
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2. (b) IRT models
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2. (b) IRT models

3PL model (Birnbaum, 1968):

Pr(Xj = 1|θ, aj, bj, cj) = cj + (1− cj)
exp [Daj (θ − bj)]

1 + exp [Daj (θ − bj)]

cj: pseudo-guessing level (lower asymptote)

Idea: when cj > 0, even test takers with low proficiency have
non-zero probability of answering the item correctly

All cj equal to zero ⇒ back to the 2PL model
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2. (b) IRT models
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2. (b) IRT models

4PL model (Barton & Lord, 1980):

Pr(Xj = 1|θ, aj, bj, cj, dj) = cj+(dj−cj)
exp [Daj (θ − bj)]

1 + exp [Daj (θ − bj)]

dj: inattention level (upper asymptote)

Idea: when dj < 1, even test takers with high proficiency have
non-zero probability of answering the item incorrectly

All dj equal to one ⇒ back to the 3PL model
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2. (b) IRT models
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2. (c) Model calibration

Calibration of an IRT model: estimation of item parameters from
a data set of collected item responses

Requires advanced computer software and routines

Usual calibration methods:

• joint maximum likelihood (Lord & Novick, 1968)

• conditional maximum likelihood (Andersen, 1970) - only for
Rasch model

• marginal maximum likelihood (Bock & Aitkin, 1981)

Possible to test for accuracy of item calibration

In the following, item parameters are assumed to be known (i.e.
item banks are calibrated)
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2. (d) Proficiency estimation

Several ability estimation methods exist with dichotomous item
responses:

• maximum likelihood (ML; Lord, 1980)

• Bayes modal (BM) or maximum a posteriori (MAP; Birn-
baum, 1969)

• expected a posteriori (EAP; Bock & Mislevy, 1982)

• weighted likelihood (WL; Warm, 1989)
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2. (d) Proficiency estimation

Maximum likelihood estimation: to find out the value of θ that is
most likely (given item responses and item parameters)

Likelihood function with n items:

L(θ) =

n∏
j=1

Pr(Xj = 1|θ,pj)Xj [1− Pr(Xj = 1|θ,pj)]1−Xj

with pj the set of item parameters (varies from one model to
another)

Value θ̂ML of θ that maximizes L(θ) is the ML estimate of profi-
ciency

Optimization routine (e.g. Newton-Raphson) is necessary
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2. (d) Proficiency estimation

Maximum a posteriori estimation: to find out the value of θ that
maximizes the posterior distribution of θ:

g(θ) = f (θ) × L(θ)

with f (θ) the prior distribution (or density) of θ

L(θ) is data (and test) driven but f (θ) must be specified a priori

f (θ) reflects some prior belief on the distribution of proficiency
levels

Usual choices for f (θ): uniform distribution, normal distribution,
Jeffreys’ prior (Jeffreys, 1946)

Value θ̂MAP of θ that maximizes g(θ) is the MAP estimate of
proficiency
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2. (d) Proficiency estimation

Expected a posteriori estimation: compute the posterior mean of
θ:

θ̂EAP =

∫ +∞
−∞ θ f (θ)L(θ) dθ∫ +∞
−∞ f (θ)L(θ) dθ

with f (θ) the prior distribution (or density) of θ

Usual choices for f (θ): uniform distribution, normal distribution,
Jeffreys’ prior (Jeffreys, 1946)

Integrals can be approximated by numerical techniques (e.g. gaus-
sian quadrature)
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2. (d) Proficiency estimation

Weighted likelihood estimation: correct for bias in ML estima-
tion by introducing some weighted correction to the likelihood
function

θ̂WL value of θ that maximizes the weighted likelihood function
is the WL estimate of proficiency
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2. (d) Proficiency estimation

Together with (point) proficiency estimates, standard errors (SEs)
can be computed

SE is a measure of precision of the proficiency estimator

The smaller the SE the more precise the estimation of proficiency

SE usually decreases with test length...

... and often directly relates to the test information function
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2. (e) Item and test information

Each item is most informative for specific range of proficiency

Item information function (IIF) for item j:

Ij(θ) =
P ′j(θ)

2

Pj(θ) [1− Pj(θ)]

with Pj(θ) = Pr(Xj = 1|θ,pj) and P ′j(θ) is the first derivative

of Pj(θ) w.r.t. θ

With Rasch model, Ij(θ) = Pj(θ) [1 − Pj(θ)] and is maximized
whenever

Pj(θ) =
exp [D (θ − bj)]

1 + exp [D (θ − bj)]
= 0.5 or θ = bj

⇒ Item most informative for proficiencies close to difficulty level
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2. (e) Item and test information

Test information function (TIF) is the sum of all IIF:

TIF (θ) =

n∑
j=1

Ij(θ)

TIF indicates how informative the whole test is

Since IIF are always positive, TIF increases with test length

SE of ML estimator θ̂ML is given by

SE(θ̂ML) =
1√

TIF (θ̂ML)

⇒ The longer the test, the larger the TIF, the smaller the SE, the
more precise the ML estimate

Specific SE formulas for other estimators
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2. (e) Item and test information
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3. Back to CAT

Six aspects will be further looked at:

• selection of first item(s)

• ad-interim proficiency estimation

• next item selection

• stopping rules

• item exposure control

• content balancing control
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3. Back to CAT

Selection of first item(s):

• at random

• fixed by the administrator

• selected as the most informative in the bank for pre-specified
proficiency level(s) (i.e. such that Ij(θ) is maximal for given
θ)

• such that difficulty level(s) is (are) closest to pre-specified
proficiency level(s) (i.e. such that |bj − θ| is minimal)

• ...
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3. Back to CAT

Ad-interim proficiency estimation:

•Maximum likelihood

•Maximum a posteriori

• Expected a posteriori

•Weighted likelihood

• ...

• Prior distributions fort MAP and EAP:

– uniform

– normal

– Jeffreys (non-informative prior based on IIF)

– ...
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3. Back to CAT

Next item selection: plenty of methods (at least 12)!

•Maximum Fisher information (MFI): select item j that max-
imizes Ij(θ̂) (with θ̂ ad-interim proficiency estimate)

• bOpt criterion (Urry, 1970): select item j such that |bj − θ̂|
is minimal (equivalent to MFI with Rasch model)

•Maximum likelihood weighted information (MLWI; Veerkamp
& Berger, 1997): select item j that maximizes L(θ̂) Ij(θ̂)

(with L(θ̂) computed with currently administered items)

•Maximum posterior weighted information (MPWI; van der
Linden, 1998): select item j that maximizes f (θ̂)L(θ̂) Ij(θ̂)
(with f (θ) prior distribution)
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3. Back to CAT

Next item selection:

•Maximum expected information (MEI; van der Linden, 1998)

•Minimum expected posterior variance (MEPV)

• Kullback-Leibler divergency criterion (KL; Chang & Ying,
1996): select item j that minimizes a weighted form of the
KL information

• Posterior Kullback-Leibler divergency criterion (KLP; Chang
& Ying, 1996): select item j that minimizes the posterior
weighted form of the KL information

• Random selection
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3. Back to CAT

Next item selection:

• Progressive method (Barrada, Olea, Ponsoda, & Abad, 2008,
2010): select item j that maximizes a weighted sum of two
elements, a random selection component and an item infor-
mation component:

– at early stage of CAT, random component is most weighted

– during CAT, random component gets downweighted and
item information becomes more weighted

– at end of CAT, only item information selection

• Proportional method (Barrada, Olea, Ponsoda, & Abad, 2008,
2010): random selection of items with selection probability
related to their information at current θ̂
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3. Back to CAT

Stopping rules:

• Length: stop when K items were administered

• Precision: stop when the precision on ad-interim proficiency
estimate θ̂ is good enough, or when SE(θ̂) < t

• Classification: stop when proficiency level can be accurately
classified as below or above some threshold T , i.e., when

θ̂ − z1−α/2 SE(θ̂) > T or θ̂ + z1−α/2 SE(θ̂) < T

and zα the z-score with lower tail probability α (confidence
interval method; Kingsbury & Weiss, 1983)

• Other classification rules: sequential probability ratio test
(SPRT; Eggen, 1999) and generalized likelihood ratio (GLR;
Thompson, 2009)
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3. Back to CAT

Item exposure control:

• Important to ensure that items are not too often administered
(content security issue)

• Possible to control for item exposure with several techniques:

– Randomesque method (Kingsbury & Zara, 1989): select
first a small set of optimal items, then randomly pick up
and administer one of them

– Sympson-Hetter method (Sympson & Hetter, 1985)

– Progressive and proportional methods (for next item selec-
tion)
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3. Back to CAT

Content balancing control:

• Possible to balance the administered items by selecting them
from pre-specified subgroups within the bank

• Selection made to satisfy some predefined ratios of admi-
nistrations for each subgroup (e.g. 25%, 30%, 15%, 30% for
four subgroups)

• Simple method proposed by Kingsbury and Zara (1989):

– first identify the subgroup from which the next item must
be administered (to match as closely as possible the pre-
specified rates)

– then apply the item selection rule into this subgroup only
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